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Abstract 

First we briefly describe two previously published algorithms: one that constructs a Cartan 
subalgebra and one that decomposes a semisimple Lie algebra L as a direct sum of simple 
ideals. Then, by reducing L modulo a prime we derive an algorithm to obtain the type of L 
(thereby solving the isomorphism problem for semisimple Lie algebras over Q having structure 
constants in Q). @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 17-08, 17B05, 17B20 

1. Introduction 

In this paper we deal with finite-dimensional Lie algebras from a computational point 

of view. Given a Lie algebra L, we would like to compute as much of its structure 

as possible. In some cases (e.g., when L is nilpotent) there is no elaborate structure 

theory available, and consequently this plan does not seem very promising. On the 

other hand, for the important class of semisimple Lie algebras the structure theory is 

very rich. Here we present some algorithms that calculate parts of this structure. 

First we give a brief overview of parts of the existing theory for semisimple Lie 

algebras. For the proofs we refer to the 

Let L be an arbitrary Lie algebra. A 

algebra that equals its own normaliser 

Cartan subalgebras are known to exist 

from Jacobson’s book: 

standard monographs [4, 51. 

Cartan subalgebra H of L is a nilpotent sub- 

in L. Over ground fields of characteristic 0, 

(see Section 2). Now we transcribe a result 
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Lemma 1. Let A, B be linear transformations in a jnite-dimensional vector space V 

satisjjing 

[A, [A,. . , [A,B] . . .]] = 0 (n factors A) 

jtir some n. Let p be a polynomial and let V p(~) = {v E V ( p(A)% = 0 for some m > 0). 

Then &((A) is invariant under B. 

Proof. See [5, p. 401. •I 

Via the adjoint representation, H is viewed as a nilpotent Lie algebra of linear 

transformations of the vector space L. Since H is nilpotent, Lemma 1 applies to any 

pair of its elements. Hence L decomposes as a direct sum 

of stable subspaces such that the restriction of any element to L; has a minimum 

polynomial that is a prime power [5, p. 411. The subspace LO corresponds to the 

polynomial X. It can be proved that it equals H [5, p. 581. 

Now let L be a semisimple Lie algebra and let the ground field F be algebraically 

closed. Then it turns out that the matrices ad h for h E H are simultaneously diagonal- 

isable. It follows that there are fimctionals xi : H + F such that 

L = H @ L,, $ . . . @ L,(,,, 

where L, = {x EL 1 ad h(x) = cci(h)x for all h E H}. These cli are called roots and the 

L, root spaces. It can be proved that the root spaces are all one dimensional. The set 

R = (~(1,. . , cc,} is a root system in the vector space H*. To a root system corresponds 

a matrix, called the Cartan matrix. The root systems are classified by their Cartan 

matrices (see, e.g., [4]) and as a consequence the classification of the simple Lie 

algebras over algebraically closed ground fields of characteristic 0 is obtained. 

If L is semisimple rather than simple, then L is a direct sum 

L=I, @..‘@I,, 

where the Zk are simple ideals of L [5, Theorem 3, p. 711. There is a corresponding 

decomposition of the set of roots R = RI U . . U Rt, where Rk is the root system of Ik. 

As a consequence also all semisimple Lie algebras over algebraically closed ground 

fields of characteristic 0 are classified. 

Here we suppose that a Lie algebra L over the field F of dimension n is given 

by an array of n3 structure constants (~5) E F3 for 1 5 i,j, k 5 n such that the Lie 

multiplication is described by 

where {xi , . . . ,x,} is a basis of L. Concerning the input field F, we assume throughout 

that it is of characteristic zero. For simplicity, we frequently assume F = Q, the field 
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of rational numbers. However, all our methods work also over more general fields that 

admit efficient symbolic arithmetic. 

For Lie algebras given by an array of structure constants it is easy to check whether 

L is semisimple (for instance, by using the fact that L is semisimple if and only if its 

Killing form is nondegenerate). If L happens to be semisimple then one would like to 

compute the structure described above. However, because we need to diagonalise the 

elements of a Cat-tan subalgebra, in general this theory is only valid over algebraically 

closed ground fields. And on a computer such fields are not feasible. In this paper we 

present some methods dealing with this problem. In Section 2 an algorithm for the 

computation of a Cartan subalgebra (central in the theory of semisimple Lie algebras) 

is described. Then in Section 3 we show a method to decompose a semisimple Lie 

algebra into a direct sum of simple ideals. Finally, in Section 4 we present an algorithm 

to obtain the type of a semisimple Lie algebra. 

The algorithms described here have been implemented in GAP, inside a library of 

routines operating on Lie algebras called ELIAS (Eindhoven Lie Algebra System). 

2. Calculating a Cartan subalgebra 

In this section we treat the problem of finding a Cartan subalgebra of a Lie algebra L 

of characteristic 0. Several solutions have been given in the literature [l, 3, lo]. We 

follow [3] because we think it leads to the most elegant algorithm. 

For an element x of L, we set 

La(x) = {y E L 1 (adx)my = 0 for some m > 0). 

From Humphreys’ book [4] we have the following lemma: 

Lemma 2. Let x be cm element of L and set K = LO(X). Then K is a subalgebra and 

NL(K) = K. 

Proof. See [4, pp. 78,791. 0 

From this it follows that a subalgebra of the form LO(X) is “almost” a Cartan sub- 

algebra. We must only make sure that it is nilpotent. The idea is to start with a 

subalgebra LO(X) and then make it smaller until it is nilpotent. To do this we need to 

be able to find elements x E L such that adx is not nilpotent (otherwise L,(x) = L). To 

this end we have the following proposition. 

Proposition 3. Let L be a non&potent Lie algebra over a field of characteristic 0 

with basis {xl,. . . ,x,,}, then the set 

{xl ,..., x,}U{xi+x,Il~i<j<n} 

contains a nonnilpotent element. 
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Proof. If L is solvable but not nilpotent then by [5, Corollary 2, p. 451, we have that 

the nil radical of L is the set of all nilpotent elements of L. Hence, there must be a 

basis element xi such that x; is not nilpotent. On the other hand, if L is not solvable, 

then the Killing form of L cannot be identically zero (because it is nondegenerate 

on the semisimple part of L). It follows that there exist basis elements xi and xj for 

1 5 i <j 5 ti such that Tr(adxi . adxj) # 0. From Tr((adxi + adxj)2) - Tr((adxi)2) - 

Tr((adxj)2) = 2 Tr(adx; .adxi) # 0, we infer that the elements xi, xj and xi +xj cannot 

be all nilpotent. 0 

Now using the following proposition, we can make a subalgebra LO(X) smaller until 

it is a Cartan subalgebra. 

Proposition 4. Suppose that L is not nilpotent over afield F. Let Q be a subset of F 

of size dim L + 1. Let x be a nonnilpotent element of L. Suppose that Lo(x) is not a 

nilpotent subalgebra and let y be a nonnilpotent element of Lo(x). Then there exists 

a co E Q such that LO(X + co(y -x)) is properly contained in LO(X). 

Proof. The proof can be obtained by a careful reformulation of the proof of 

Lemma 15.2 A in [4] (see also [3]). We omit it here. 

This proposition implies that the following algorithm terminates: 

Algorithm Cartan 

Input: A Lie algebra L. 

Output: A Cartan subalgebra of L. 

Step 1: If L is nilpotent, then return L, otherwise go to Step 2. 

Step 2: Let x be a nonnilpotent element of L. If LO(X) is nilpotent then return Lo(x), 

otherwise go to Step 3. 

Step 3: Let y be a nonnilpotent element of LO(X) and let c be a scalar such that 

Lo(x+c( y-x)) is properly contained in LO(X). Return to Step 2 with x+c(y-x) 

in place of x. 

Remark 5. This algorithm runs in polynomial time. For the details we refer to [3]. 

3. The decomposition into simple components 

In this section we suppose that L is a semisimple Lie algebra and we try to find the 

decomposition of L into a direct sum of simple ideals. Here we follow [2]. Let H be 

a Cartan subalgebra of L. We will use the adjoint action of H on L to decompose L 

as a direct sum of simple ideals. Let {hl, . , ht} be a basis of H. A decomposition 

L=L, @...@L,@H 
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will be called a generalised Cartan decomposition of L with respect to H if for 1 < i 5 1 
and 1 5 j 5 s we have the following: 

(i) Lj is mapped into itself by adh,, 

(ii) the minimum polynomial of the restriction of adh, to Lj is irreducible. 

Since the adh; are semisimple transformations, they all have a square free minimum 

polynomial. Hence, Lemma 1 gives an easy algorithm to compute a generalised Cat-tan 

decomposition of L with respect to H. 

Proposition 6. Let L be a semisimple Lie algebra over a field F of characteristic 0. 

Let H be a Cartan subalgebra of L. Suppose that 

L=L, e...@LL,$H 

is a generalised Cartan decomposition of L with respect to H. Then the minimum 
polynomial of ad h for every h E H restricted to Lj is irreducible. 

Proof. Let h E H and let f be the minimum polynomial of the restriction of ad h 

to L, (for a certain jE{l,..., s}). Suppose f is reducible, i.e., f = fi fi. Then Lj 
decomposes accordingly: 

where V, and V, are stable under H (by Lemma 1) and the minimum polynomial of 

the restriction of ad h to 6 is fk for k = 1,2. Now we tensor L with the algebraic 

closure of F. Then L splits as a direct sum of root spaces that are one dimensional. 

The roots are determined by their values on the basis elements of H. The minimum 

polynomial of the restriction of a basis element to Lj is irreducible. So the minimum 

polynomials of the restrictions of a basis element to 6 and V, are the same. Hence in 

L, there is at least one root space of dimension > 1. (For every eigenvalue there is an 

eigenvector in fi, but also in V,.) But this is impossible. Hence f is irreducible. 0 

The next theorem states that the generalised Cartan decomposition of L with respect 

to a Cartan subalgebra is compatible with the direct sum decomposition of L. 

Theorem 7. Let L and H be the same as in Proposition 6 and let 

L=Ll @...@L,$H 

be a generalised Cartan decomposition of L with respect to H. Suppose that L de- 
composes as a direct sum of ideals, L = II 63 12. Then every Li is contained in II or 
in 12. 

Proof. We can write 

L, = Lj n I, @ W @L, n 12. 

We note that H decomposes as H = HI @ H2 where Ht is a Car-tan subalgebra of Ii 

for I= 1,2. By Proposition 6 there is an element h E HI U Hz such that the restriction 
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of adh to Li is nonsingular. (Otherwise the minimum polynomial of the restriction of 

every element of a basis of H to L, would be X. This implies that [H, &] = 0 and by 

definition of Cartan subalgebra we have f., c H, a contradiction.) 

First suppose that h E HI. Then also h E Ii so that ad h(L) c II and in particular 

ad h(L;) c II. Now the fact that ad h is nonsingular on Li implies that W $ L, n Zz = 0. 

Hence Li is contained in Ii. In the same way h E Hz implies that Li is contained 

in 12. q 

This theorem implies that the following algorithm is correct. 

Algorithm Decompose 

Input: A semisimple Lie algebra L. 

Output: A list of bases of the direct summands of L. 

Step 1: Compute a generalised Cartan decomposition 

L=L, $...cBL,~@H. 

Step 2: For 1 5 i 5 s determine a basis of the ideal of L generated by Li. 

Step 3: Delete multiple instances from the list. 

Remark 8. If L is defined over a field of characteristic p # 2,3, then the statements 

of this section hold for L, provided that the Killing form of L is nondegenerate. In this 

case L behaves like a semisimple Lie algebra of characteristic 0 (see [9]). 

Remark 9. The method runs in polynomial time except (maybe) for Step 1, where 

an oracle is called to factor polynomials. For the algorithmic problem of factoring 

polynomials many solutions have been given (see [7]). Some of these methods do not 

run in polynomial time, others use randomisation. So the running time as well as the 

nature (deterministic or randomized) of the algorithm depend on the specific factoring 

algorithm used. 

4. Identifying a semisimple Lie algebra 

Over algebraically closed fields (of characteristic 0) all semisimple Lie algebras have 

been classified. A simple Lie algebra is isomorphic either to an element of one of the 

“great” classes of simple Lie algebras (Al, B/, Cl, 01) or to one of the exceptional 

Lie algebras (&, ET, Es, F4, Gz). And the semisimple Lie algebras are sums of the 

simple ones. If a given Lie algebra L over Q is isomorphic to e.g. A2 + D5 + G2 (when 

viewed over Q), then we call AZ + 05 + G2 the type of L. 
For a semisimple Lie algebra we would like to be able to obtain its type. This is 

equivalent to solving the isomorphism problem for semisimple Lie algebras over alge- 

braically closed fields of characteristic 0, having structure constants in Q. In general, 
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Table I 
Structure constants of a six-dimensional semisimple Lie algebra 

XI X2 X3 X4 XS X6 

XI 0 0 2x.1 -2x3 -2X6 2X4 

X7 0 0 2x3 2.~4 -2x5 -2X6 

X3 -2X4 -2X3 0 0 X2 XI 

X4 2x3 -2x4 0 0 Xl -X2 

X5 2X6 2r5 -X2 -XI 0 0 

*fl -2x5 2*(, -x, X2 0 0 

however, to calculate the root system and the corresponding Cartan matrix, we need 

arbitrary number fields. We have an example illustrating this. 

Example 10. Let L be a six dimensional Lie algebra over the field of rational numbers 

with structure constants shown in Table 1. (It is the semisimple part of the Poincart 

algebra.) 

Then the determinant of the Killing form is -220, and hence L is semisimple. It 

is immediately seen that XI is not nilpotent and that La(xt ) = (xl, x2) is a Cartan 

subalgebra. The transformations adxt and adxz have minimum polynomials X3 + 4X 

and X3 - 4X, respectively. The decomposition of Section 3 is 

where L,%, is the subspace of L spanned by xi and .xi. From the multiplication table 

it follows that the ideals generated by L 3,4 and Ls,c are both equal to L. Hence, 

by Theorem 7 we have that L is simple. However, over Q there is only one six- 

dimensional semisimple Lie algebra, namely Al +A 1. In this case, to obtain a splitting of 

the Cartan subalgebra, we need the field Q(G), a field of degree two. “Generically” 

the degree of the field needed is k! if the degree of an irreducible factor of the minimum 

polynomial of an adh is k. 

The idea we pursue here is to avoid working over large number fields by reducing 

the Lie algebra modulo a prime number p. (Note that if we multiply all basis elements 

by a scalar 2, then the structure constants relative to this new basis are also multiplied 

by i,, so that we can get all structure constants to be integers.) The algebraic extensions 

of F,, are much easier to handle. If p does not divide the determinant of the matrix 

of the Killing form, then the reduced Lie algebra fits into a similar classification (see 

[9]). The only thing we have to prove is that both Lie algebras produce equivalent 

Cartan matrices. 

Throughout we assume that L is a semisimple Lie algebra with structure constants 

in Z and with Cartan subalgebra H. The Killing form on L will be denoted by K. Let 

{h,, . , h,} be a basis of H and let J; be the characteristic polynomial of ad h, for 

1 5 i 5 1. Write f; =X”‘gi where gi(O) # 0. If p 2 7 is a prime number not dividing 

the determinant of the matrix of the Killing form and not dividing the numbers gi(0) 
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for 1 5 i 5 I, then p is called pleasunt. In the sequel we use a fixed pleasant prime 

number p. 

Let F be the smallest number field containing all eigenvalues of the ad h for h E H 

and let (5~ be the ring of algebraic integers of F. There exists a prime ideal P of OF 

such that P n Z=(p) (see [6, p. 91). Let 

be the localization of (5.~ at P. Let MP be the unique maximal ideal of 0;. It follows 

that 0:/M, = FpI12, the finite field of pm elements. In the sequel we view L as a Lie 

algebra over C$ and we set 

Let 4 : 0: + Fp”! be the projection map. In the obvious way we extend 4 to a map 

from L into Lp. Let {xi,. . . ,x,} be a basis of L. Then 

4 2 aixi = 2 &Ql>fi, 

( ) I=1 i=l 

where {_?I, . .,X,} is a basis of L,. Then the structure constants of L, are the images 

under C$ of the structure constants of L, and hence they lie in the prime field Fp. From 

this it follows that the Killing form ‘cP of Lp satisfies 

Because p is pleasant, we have that rcP is nondegenerate. 

Let HP be the image under I$ of H. The map 4 induces a map 

If i : H + I”:; is an element of H*, then we set &J.)(+(h)) = &A(h)). The image of 

a i E H* is denoted by x. 

Since 0: contains all eigenvalues of adhi for 1 < i 5 1, we have that the roots exist 

over 0; (though the root vectors need not exist, because 0°F is not a field). Let R c H* 
be the set of roots and denote the image of R under C$ in Hz by 1. Then the elements 

of I? are the roots of Lp (since Lp is defined over a field the root vectors do exist in 

this case). 

Lemma 11. The subalgebra HP of Lp is a Cartan subalgebra of L,,. 

Proof. Let c1 be a root of L. The fact that p is pleasant implies that the multiplicity 

of 0 as a root of JI: is the same as the multiplicity of 0 as a root of f; and hence 07 

is nonzero. So if xi is a nonzero element of the root space of Lp belonging to X, then 

there is an index i such that [hi, x,-l = t?(hi)xi is nonzero. Hence, if [i, X] E HP for an 

XE Lp and all i E HP, then XE Hp. The fact that HP is nilpotent is trivial. 0 
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Lemma 12. The restriction of rcP to HP is nondegenerate. 

Proof. Let h be an element of H and h be its image in HP. Let L = H @ L1 be the 

Fitting decomposition of L relative to H (see [5, p. 571). Then from [5, p. 1081, it is 

seen that K(h, x) = 0 for all x E Li . Hence also rcP(&i) = 0. Because ~~ is nondegenerate 

there must be a g E H such that KJ~, J) is nonzero. 0 

It is well known that we can identify H and H* because the Killing form is non- 

degenerate. Let i, be an element of H*. Then the corresponding element 0(n) of H is 

required to satisfy rc(@(n), h) = A(h) for all h E H. If {hl,. . . ,h,} is a basis of H and 

0(%) =alhl + . + alhl, then we have the system of equations 

ai WI) 

(K(h,,h,)) ; = ; 

oi 1 

. (1) 

al W,) 

By Lemma 12 the determinant of the matrix of this system is an integer not divisible 

by p. Hence, by Cramer’s rule, there exists a unique solution over 0:. Also by Lemma 

12 we have that in the case of LP there is a similar map 0,. 

Lemma 13. We have the following identity: 

&30=0,0Cj. 

Proof. Choose i, E H” and suppose that /3,(&~)) = bthi + . . . + blil, where bi E FPft2. 

Then because J(J)(&) = 4(A(hi)) we have that the equation system for the b, is just 

the image under $ of the equation system (1). Hence, bi = $(ai) and we are done. Cl 

Using the map 8, an inner product (, ) is defined on H*, by 

In the same way there is an inner product ( , )p on Ht. 

Lemma 14. For A, p E H* we have &(I,, p)) = (1, ,12)~, 

Proof. The proof is by straightforward calculation: 

= K~($(&~~)), I,)) by Lemma 13 

= (d(n), J(p))P. 0 
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Let M and /3 be two roots, then we set 

For the modular case we have a similar formula 

We remark that by [8, Theorem 5.61, it follows that (p,& is nonzero. 

Following [9], we call a set of roots {at,. . . , cq} a fundamental system if the fol- 

lowing is satisfied: 

(i) If x is a root, then one of the following holds: 

(a) cc is a member of a sequence of the form a,, , ail + PIi,, . , 

(b) -X is a member of such a sequence, 

(ii) Every diagonal minor of the matrix ((Mi, Uj) ) is positive. 

In the modular case the matrix in (2), will be an integer matrix (aij) such that 

4(ai,) = (cx~,oL~)~ and a,- = 2,0, -1, -2 or -3. The matrix ((c~;,~rj)) is the Cartan matrix 

of the root system. 

Proposition 15. Let C be the Cartan matrix of R and let c be the Cartan matrix 

of R. Then 4(C) = c. 

Proof. Let { 31,. . . , q} be a fundamental system of roots in H*. Then it is immediate 

that {Gr,. _. ,tll} is a fundamental system of roots in HP*. Hence Lemma 14 implies 

that 

Corollary 16. From the Cartan matrix of R we can recover the Cartan matrix of R. 

Proof. The numbers (ai, aj) are known to be 2,0, -1, -2 or -3 

p > 7, we can recover those numbers from their images in FP. 

finishes the proof. Cl 

[5, p. 1211. Because 

Now Proposition 15 

The above results lead to the following algorithm: 

Algorithm Type 

Input: A semisimple Lie algebra L over Q. 

Output: The type of L. 

Step 1: 

Step 2: 

Step 3: 

Calculate a Cartan subalgebra H of L (Section 2). 

Extend a basis of H to a basis of L and multiply by an integer in order to 

ensure that all structure constants relative to this basis are integers. 

Determine a pleasant prime p. 
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Step 4: Consider the Lie algebra Lp = L ~3 Fprn where m is large enough to ensure that 

the characteristic polynomials of adhi for hi in a basis of HP split into linear 

factors. 

Step 5: Decompose Lp into a direct sum of simple ideals (Section 3). 

Step 6: For each component of Lp, determine a fundamental system inside the root 

system. Calculate the Cartan matrices which determine the type of L. 

Remark 17. The integer m in Step 4 will be the least common multiple of the degrees 

of the irreducible factors of the minimum polynomial of ad hi, where hi runs over a 

basis of H. We cannot prove that this number is polynomial in the dimension of L. 
However, this bound is much better than the bound on the degree of a splitting field 

of characteristic zero. 

Remark 18. The number -3 will occur in the Cat-tan matrix only if there is a simple 

factor isomorphic to Gz. So if the semisimple Lie algebra L has no ideals of type Gz, 

then we can take p > 5. On the other hand, if a simple ideal I of L is of type Gl, 

then we can recognize it by inspection of the dimension and the rank. The conclusion 

is that we can always take p > 5. 
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